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ABSTRACT

An analysis is undertaken, both mathematical and numerical, of the

quenching of two—dimensional premixed flames under a variety of circumstances.

The discussion is divided into two parts, the first of which deals with

quenching due to proximity to a surface through which there are heat

losses , the second , quenching due to a shear flow of the kind experienced

by a flame attached to a wire. The discussion includes a critical appraisal

of flame stretch and the role sometimes claimed for it in intuitive explana-

tions of flame quenching.
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p
SIGNIFI CANCE AND EXPLAN ATION

Premixed flames are flames that occur when the reactants are thoroughly

mixed before combustion, the inner cone of a bunsen burner flame being a good

example. They are distinct from diffusion flames (e.g. a candle) for which

the fuel and oxygen are essentially separated , mixing together by diffusion

only at the flame itself. It is possible to put a flame out (quench it)

by cooling it and this can be done in several ways . Inserting a piece of

metal (which is a good conductor of heat) into the flame will remove heat

from it for example. Wire gauze is very effective in this respect and was

used for this very purpose in the miners safety lamp developed in the 19th

Century . Blowing on a flame in the right way can also cool it.

The purpose of the present paper is to examine a mathematical mode’ of

a pre!nixed flame and investigate the precise manner in wh ich the two coo]ing

mechanisms can cause quenching .

~

The responsibili ty for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE QUENCHING OF TWO-DIMENSIONAL PREMIXED FLAMES

*J. Buckznaster

1. Introduction

The equations solved in this paper have the general form

Uf(y) = ~T + 5ye
O/T 

, (l.la)
ax

Uf(y) = t~Y - BYe O/’T 
, ( l . lb )

ax L

e2 e a 2 a 2
B 

~ 
ex~ (1 + T ) ‘ ~ 

= +

2 ( l + T )  ax ay

with upstream conditions

x -
~ 

-
~~~ T - T , Y -~ 1 . (1.2)

Add itional boundary conditions will be introduced in due course. Here. T

is  the tempera ture , Y the mass fraction of reactant, L the Lewis Number ,

O the activation energy , and Uf (y) the gas velocity which is assumed to be

directed in the positive x direction and depends only on y. The scaling

is such that when L = 1 and f(y) 1, a one—dimensional flame perpendicular

to the x axis has a speed (U) of unity in the limit 0 -‘~ ~~~.

These equations , incorporating as they do the fundamental elements of

diffusion, convection and reaction, have been widely used in the study of

premixed flames. So much so, that they have acquired a scientific life of

their own, independent in some respects of real flames. Thus although the

• problems to be considered in the present paper can and will be provided with

some physical motivation , it should be emphasized that our primary concern is

Permanent Address: Mathematics Department and Depa r tment of Theoretical and
Applied Mechanics , Universi ty of I ll ino i s,  Urbana .
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with an understand i nq of the natur .~ of the solutions to these equations , and

not with the explanation of experimentally observed phenomena . In this

connection we eschew the all too common practice in combustion science of

viewing the relation between mathematics and experiment as a one way Street in

which the only ro1t~ of mathematics is to explain known experimental facts.

For one thing mathematical models such as (1.1) can be used to explore the

validity of intuitive physical arguments . If a mathematical model contains

precisely the ingredients upon which a physical argument is based , and yet has

solutions that contradict the intuitive reasoning , then the latter must be

abandoned . One of the concerns of this paper is to apply such a test to the

concept of flame stretch .

One of the ways in which equations (1.1) are deficient as models is that

they contain no fluid mechanics . It is always conceivable that the solutions

of such a system have qualitative features quite distinct from those that

would be found if more accurate equations were adopted , but this possibility

seems unl ikely in the present case. The techniques of the present paper can

be extended to equations that correctly incorporate the fluid mechanics so that

it will be possible to examine this question in future studies .

Activation Energy Asymptotics - A Dichotom1. The only mathematical tool devised

so f a r  for  the ra t ional  solution of equations such as (1.1) is activation

energy asymptotics , i.e. the construction of solutions in the limit 0 -~

The pioneer ing work in premixed flames is the one—d imensional steady analysis

of Bush and Fendell (1970) , and more recently Sivashinsky (1974a , 1974b, 1975)

and Bv~kmaster (1977) have obtained results for both three—dimensional and

unsteady flames. The structure of these flames is characterized by a

flame—sheet of thickness to which all the reaction is confined , and

—2—



moreover , the analysis demands that the temperature in the reg ion beh ind the

flame sheet (where V 0) differs by only an o(~-) amount from the adiabatic

value (l-fT). This imposes strong restrictions on the class of problem s

that can be solved in this fashion and it is useful to examine these limitations .

Defining the location of the flame sheet by

X X~~(Y) ( 1 . 3 )

it is convenient to replace x by the new variable s (x_ x
f

) so that the

flame-sheet is fixed at s 0 , and the unburnt mixture occupies the reg ion

s < 0. Adding equations (1.1) eliminates the reaction terms and we may write

U f ( y )  (T+Y)ds = 

~: ~~
T+~~ tY)ds

which upon evaluation becomes

Uf (y)[T(s=O-f ) — 1 - T i  - (l::~ 2) 
~~ 

(s 0+) + 2x~ }! (s 0+)

= — T(s=0+) + T] + J ds[~~~ + 

~ 
, (1.4)

representing a global energy balance.

As noted above, in order to carry out a self-consistent asymptotic analysis,

each of the terms on the left side of this equation can have a magnitude of at

most o(~.) , so that each of the two terms on the right must be similarly

bounded. Restricting attention to situations which permit large flame deforma-

tions (i.e. x = 0(1)), there are two ways to ensure this. The first is to

look for disturbances that are described on an 0(0) scale by writing

X
f 

= , (1.5)

the key to the work of Buckmaster (1977) and that of Sivaskinsky referenced

earlier. The second is to write



L = 1 + o(~-) (l.6a )

and confine attention to those problems for which , consistent with this,

T + V = 1 + T + oR , (l.6b)
~

*the key to the stability analysis of Sivashinsky (l977~ . At the present time

a fair amount is known about solutions generated by the first choice, but their

role in combustion theory is unclear since they have a propensity for local

instability . Much less is known about the second type of solution, although

the stability question appears more favorable (there is a band of Lewis Numbers for

which the one-dimensional flame is stable for this class of disturbances), and

for the most part the analysis of the present paper is confined to solutions

of this type .

*• Though not clearly stated in that work.



2. Flame Near a Quenching Surface

The effect of heat losses on flames is of great practical interest and

has been studied for many years. Sound mathematical results are restricted fo

the case of volumetric heat losses, a problem of less interest than one in which

the losses occur at a boundary, the subject of this section.

The problem to be stud ied can be thought of as hav ing its physica l origin s

in the quenching of a flame at a burner rim . The flame is confined to the

region y ~ 0 (Fig. 1) with the quenching surface located at y = 0. This

surface is assumed to be chemically inactive so that the diffusion mass flux to

it is zero, but o(~-) heat losses are permitted at a rate proportional to the

difference between the surface temperature and T , the ambient temperature

of the fresh mixture. For large values of (—x) the flame is fa r  from the

surface and unaffected by it. Then for a uniform flow (fEl) the flame is one-

dimensional and inclined at an angle arcsin (U 
I
) to the horizontal. As x

increases the flame approaches the surface and is effected in two ways. There

is a geometric effect present even in the absence of heat losses, which occurs

(again considering a uniform flow) because the one—d imensional structure is not

compatible with an adiabatic wall condition except in the case U = 1. Secondly,

heat losses will tend to reduce the flame temperature (the temperature

immediately behind the flame sheet) and this will tend to slow the flame down.

Lewis and von Elbe (1961, p. 213) in a discussion of burner rims argue that

quenching occurs when the heat losses reduce the flame speed to zero, so that

the flam e of Fi g. 1 wi l l  be horizontal  at the quenching p oin t.  How obvious

this is depends on ones intuitive powers of course, but it is worth noting tha t
I

it is in sharp contrast with results for one—dimensional flames with volumetric

heat losses (Buckmaster , 1976), for which extinction occurs when the losses are

sufficient to reduce the flame speed to a fraction e 1”2 of the adiabatic

—5—
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value. For this reason , because it has never been shown that there are solutions

of (1.1) consistent with Lewis and von Elbe ’ s phys ica l  d e s c r i p t i o n,  and bec au se

the interplay between the geometrical and heat loss mechanisms has never been

explored , w~ study this problem .

Activation Exier_gy A~ymj~~~tics. The analysis of equations (1.1) in the asymptot ic

limit 8 is by now straightforward , and is a generalization of Bush and

Fendeil’s (1970) analysis of the one—dimensional deflagration wave. Reaction

is conf ined  to a t h in  f l ame  sheet (the flame sketched in Fig. 1) in which the

gradients  of T and Y change rapidly ,  and both within the flame sheet and

elsewhere solutions are sought as series in inverse powers of 0 , i . e .

c — c  ~~~~~~~~~~ + 0 ~L
0 0 1 

e
2

In view of (1.6) it is appropriate to write

= 1 — 
~~

- A ,  A = 0(1) , (2.la)

T + V p (l+T ) 4- + of-J~) 
. (2.lb)

so that adding equations (1.1) together yields an equation for valid

everywhere outside of the flame sheet,

Uf(y) -
~

----- — A~p 1 
= AA T 0 

. (2.2 )

Behind the f lam e sheet V vanishes identically (there is no other mechan ism to

terminate the chem ical rea ction) and T = 1 + T , the adiabatic flame
0

temperature. Ahead of the flame the reaction is frozen, i.e.

X < X
f 

Uf (y) —~~-~~ = ~T0 
. (2.3)

T0 
is continuous across the flame sheet but its gradient jumps, the magnitude

of the jump being determined from an analysis of the flame sheet structure,

which we now cons ider . Thus within the flame sheet.

-6—
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y = 0

Uf (y)
______________ 

FLAME-SHEET
I-) 

X = X
f

(Y )

y = h(x)

Yzj, T=T

QUENCH ING SURFACE
> x

FIG. 1. FLAME NEAR A QUENCHING SURFACE

I



T 1 + T + ~~
- T (fl) + , (2.4a)

Y ~~- w(n) + 0 -
~~~~ , (2.4b)

1y — h = ~~
- ii • ( 2 . 4 c )

(V = h(x) defines the location of the flame sheet and is a preferable

description to one using X f since , as we shall see, the latter is not

necessar i ly  s ingle  valued) , whence

= - ~~~~~~~ = -2 1( l +T ) 4
[l+ h 2 ] ’w exP [ 

T 

2] 
. ( 2 . 5 )

do ( 1+T

The quantity (-N-u) is a linear function of n so that matching with the

solution on each side of the flame sheet implies that is continuo .~s across

the sheet and so may be said to have the val ue 
~ lf there, whereupon

T + u = ~P 1f (2.6)

Integrating the equation for T obtained by eliminating w between (2.5)

and (2.6) then leads, in the usual way , to the result

y h - 0 + [l+h ’2]~~~expI ~ 1f 21 . (2.7)

L2 1÷T. J

Since V vanishes to all orders immediately behind the flame sheet , ~P 1f 
is

the perturbation flame temperature. The notion that an increase (decrease) in

flame temperature is associated with an increase (decrease) in flame speed goes

back to Mallard and Le Chatelier (1883), so tha t P
1f 

is a quantity of great

physical interest.

It remains to observe that since the equation

Uf(y) = (l— ~ -A )Ap + ~~
- AliT

p
is valid everywhere, there is a jump in 

~~l 
across the flame sheet whose

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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magnitude is defined by

6(V~~ ) = —A6(~ T0
) . (2.8)

Equations (2.2) and (2.3) must be solved subject to the conditions (2.7),

(2.8) , the continuity of T
0 

and 
~ l 

across the f l ame  shee t ,  and a p p r o p r i a t e

boundary  condi t ions  at the quenching surface . The la t te r  are t aken  to b’-

= 0 = 0, = (T-T ) (2.9a .o)

0 1i e .  — = 0 , — = a ( T  —T ) • (2.9c, d)0

wh~ ’-e cx is a prescribed 0( 1)  constant .  Such small  heat losses are imposed

on the problem by the requirement (l.6b), but small though they are, through

their direct effect on ~ 1f they can substantially influence the flame . In

reality the heat losses through a su r face  wi l l  depend on the temperature f ie ld

within the solid phase, but by adopting (2.9) this complication is eliminated

without  compromising the essential physics.

The Slow Flame Approximation. Activation energy asymptotics has reduced the

mathematical problem to an elliptic one involving a free boundary (the flame

sheet). Other than the obvious mathematical difficulties of such a problem

there is a serious conceptual difficulty which arises from the fact that the

solution at any point depend s on the solution everywhere. It is therefore

necessary to construct the solution downstream of any quenching point that might

exist, where the flame sheet is terminated , and yet what form this solution

• must take is unknown at the present time . A resolution af this difficulty is

to assume that the gas speed is much greater than the adiabatic flame speed , i.e.

U >> 1, f = 0(1), for then x derivatives are much smaller than y derivatives ,

the governing equations reduce to parabolic type , and these c-an be integrated

by marching downstream towards the quenching point. The situation is in some

-9—
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ways analogous to that of determining the location of the separation point in

a body immersed in a viscous flow. Use of the Navier-Stokes equations , whi ch

are elliptic , presents enormous difficulties for this problem since the nature

of the flow downstream of the separation point is poorly understood . If the

Reynolds ’ Number is very large , however , the flow can be descr ibed by

Prandtl ’s boundary layer equations, which are parabolic, and these can be

integrated towards the separation point (Schlichting, 1955 p. 131).

Formally the simplif icat ion is achieved by introducing a new independent

var iable

x = x (2.10)

and then , in the limit U ~~
- 

~~~, the equations reduce to

aT a2T
x < X

f 
f(y) -~~~~~~ = (2.lla)

ay

2 2

Ix — xf ! > 0 f ( y )  —
~~--~~

- — —~j- = A —i- . (2.llb)
____________ X ay ay

t.~~reover the flame sheet condition (2 .7 )  simplifies to

aT r ‘P 1
y -

~ h - 0 expl 
lf 

2 1 (2.12)
y 

L2(l+’ç) J

so that (2.8) can be written in the form

= _A 4_ -) . cA e xP [_  
“ ‘
~~ 2] 

. (2 .13)

.1 
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Solution for a Uniform Flow, A 0. This simplified problem can be solved

numerically for arbitrary choices of A and f(y), but it is advantageous

• to restrict attention to a Lewis Number of one (A = 0) and velocity distribu-

tions f for which ‘p 1 can be explicitly expressed in quadratures. Lewis

Number effects will be explored in a different but related problem in §4.

Consider a uniform flow (f 1). Far from the wall , where ‘P1 
is small ,

the solution is characterized by a flat flame inclined at 45° to the horizontal.

The structure in this far-field limit is

x+y-h0
X < X f 

T
0
= T + e  , ‘P1

= 0  (2.l4a)

X > X f T0 = 1 + T , ‘P 1 = 0 (2.l4b)

X f = —y + h0 , (2.l4c)

and this provides the initial condition for the general problem. The constant

h0 is chosen so that at x = 0, where the flame is a distance h
0 

from the

wall , the influence of the latter is small enough to validate (2.14) . The

numerical integration can then proceed downstream from x = 0.

The value of ‘P 1 
at the flame sheet is

x IT~ - T0(s ,0)1 r 1 h2 (X ) l
‘Pl

(x) = —j -,~ 
f ds 

(x—s)1”2 
exP [—~~ (x—s)J (2.15)

where h is the distance between the flame sheet and the wall (h(0) = h
0
),

and in this way the problem is reduced to one for T
0 

and h alone. It is

clear that the wall temperature will exceed T,, so that ‘P1 
is non-positive

f
everywhere on the flame sheet .

Useful insight into the nature of the solution can be obtained by using

an approximate technique that was developed to a very sophisticated level in the

study of viscous boundary layers prior to the advent of electronic calculating

— 11—



machines (Schlichting, 1955, p. 201). Integrating the equation for

between the wall and the flame sheet yields an exact energy balance , namely

h 1 ’ P l
~~~

— J dy T
0 

= exp~~ 
if 

2 1 + h ’ ( X ) ( l+T ) . (2.16)
0 12 ( l + T  ) JL

The assumption is now made that a fairly crude approximation to T
0
, provided

it sa t i s f i es  the boundary condit ions at the wall and the flam e sheet,  can

generate a good approximation to the left side of this equation. Thus

approximating T
0 

by a simple polynomial,

T
0 

1 + Ti,, + - 

~
) ex~[ 1 ~~

2] 
, (2 . 1 7 )

and substituting into (2.16) yields the approximate equation

2 1 
_______— hh ’ —1 — — 

1 
2 

(2.18)
3 6 (1+T )

Th is is not accura te when h is large because (2 .17) fa i ls  to reflect the

important fact that T
0 

will  only d i f f e r  from T in the 0(1) neighborhood

of the f lame sheet, but it should be a reasonable approximation when h is 0(1).

When the wall is insulated (ci=0) ‘P
~ 

vanishes identically and (2.18) has

the solution

h 2 
~ 3 ( X 0

— ) ( ) ,  x0 = constant (2 .19 )

so that  the f lame intersects the wall at 
~~ 

= 

~~~~~~ 

That this phenomenon is not

just a creature of the approximation is suggested by the fact that a local ~ )lu-

tion of the exact problem can be found corresponding to intersection of the wall

and the flame sheet. For if  it is assumed that when (x 0-x) is small the

sheet is described approximately by

h C(~ 0
—~)

1
~
”2 (2.20)

— 12—



then in the neighborhood of it is appropriate to write

T 1 + T + (x —x )1”2F (~) (2 .21)0 0

which is a solution of (2.lla) provided

F” — ~F ’ + F = 0 , (2.22)

- 1/2
= y(x0

—X )

The boundary conditions (2 .9c) , (2 .12)  require that

F’(O) = 0, F’(C) = 1 (2.23a,b)

so that the appropriate solution of ( 2 . 2 2 )  is

1

F = A~ f~ dCe 
2

where B is a solution of the transcendental equation

1 2
B (e 

2
_ i )  

,

0 C

and A is chosen to ensure (2.23b). As with any local downstream solution of

a parabolic problem that does not make use of the initial conditions, there are

undetermined constants such as C.

An exact local solution of this type can also be found when cx is not zero ,

assum ing that ‘P is locally a constant.
if

When the wail is not insulated (c~*0), ‘P1 does not vanish and ‘P~ is
f

negative since heat losses to the wall cause a steady decline in the flame

temperature. The magnitude of at any point depends on ‘* and it is
f

apparent that if Cl is large enough the right hand side of (2.18) may well

become positive at some va lue of x~ corresponding to a local increase in h .

Such an increase , assuming it does occur , correspond. to a negative flame speed

in the sense that relative to the gas the flame propagates towards the burnt region.



These various con i t u  have been tested by numerical integration.

The equa t ion  for  T0 can be w r i t t e n  in the form

2 aT
~~. h - hh ’ z —p- = (2.24)

2az

h(x)

which must be solved in the domain > 0 , 0 < z < 1 subject to the ini tial

condition (2.l4a) and boundary conditions

z = 0 -
~~

--
~~~ = 0 , (2.25a)

r ‘P 1 1
z 1  T 1 + T , —~~ .hexp J 

f I . (2.25b ,c)—— 0 a~ 2
L2~~~

TO)

Backward differenc ing in x yields an equation for T
1
(z) T

0(X. 1 ,z)

which conta ins  h , h(x. ) as well as known data at X - . An iterative
j+l 3

procedure was adopted in which h .+1 
is guessed , the equation for

integrated to satisfy the boundary conditions (2.25a,b), and h .÷1 
adjusted

until (2.25c) is satisfied . This proved to be rapidly convergent. Integration

in the z direction was undertaken by central differencing followed by inver-

sion of the trid iaqonal matr ix using a Choleski decomposition.

Resul t s  for the f lame shape are shown in Fig . 2 for d i f f e ren t  values of a

with T f ixed (= 0 .2 ) . For suf f ic ient ly  small values of ci the flame height

decreases with a monotonically decreasing slope until intersection with the

wall occurs in a manner consistent with (3.10). Increasing the magnitude of cx

eventual ly  leads to the appearance of an inflexion point and the curve displays

a flattened portion of increasing length. Ultimately at some critical value of

~~~ 6.9), h has a local minimum denoted by Q, and just downstream of Q h

is an increasing function of x .

—14—
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Those portions of the curve for which h is an increasing function of

arc physically unusua l , since they correspond to a neqative flame speed . Their

pecu l i a r i t y  is seen most c l e a r l y  perhaps by not ing tha t thc present i~roblem is

identica l to that of a one-dimensional unsteady flame travelling down a tube

whose end is sealed by a quenching surface  at y = 0 , w i t h  x p lay ing  the

role  of t ime . A negative f l ame  speed corresponds to  r e f l e c t i o n  of the f lame

from the end wa l l .  This au thor  knows of no experimental reports  of negat ive

f lame speeds so that  a p lausible  hypothesis , adopted throughout th i s  paper ,  is

that the flame is quenched at Q. The overall picture is then consistent

with the physical description of Lewis and von Elbe (1961, p. 216). Note that

wi thout this hypothesis the presen t resul ts provide no explana tion of quench-

ing , for the numerical computations can be continued downstream of Q with no

difficul ty until ultimately the flame intersects the wall.

The region between the quenching point and the wall is known as the dead

space and at the critical value of a this has a minimum thickness of

approximately 0.9.

Solution for a Shear Flow, A = 0. In examining the behavior of a flame near

a stationary wall it is more realistic to cons ider a shear f low , rather than a

uniform flow , so that the problem is now reconsidered with the choice

f ( y ) y . ( 2 . 2 6 )

This alters the calculation in two ways. First, the value of ‘P 1 
at the flame

sheet is now given by

I
cz36r (~.) X ET — T

0
(s, 0)J r 

~ h
3
( )1‘P1 2~ 

f ds exP L_~~
. 

(x—s)J 
(2.27)

(v—s)

and secondly the fa r—fie ld  flame is no longer f ia t  so that the init ial  cond i-

tions must be reconsidered . Indeed , in the far  f ie ld

-16-
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p4
h (h~ —2 ~~)

1”2 (2 . 2 8 )

with a temperature profi le

T + expEy - (h~ -2~~)
1”2 ) (2 .29)

valid when

-~ ~. x -
~ -= , y - (h

~ -2x )1”2 = 0(1) . (2.30)

For as x -
~ 

-= (y fixed), T
0 

-
~ T as required; when y = h , T0 = 1 + T

aT
0 2 1/2 aT

0 
a T0and -s—— = 1 as required ; 3nd (2 . 2 9 )  is a solution of (h -2X ) —

~~~~
— =

ay
a valid approximation to the true equation for T

0 
in the region defined

by (2.30).

The results of numerical integrations starting with the initial (X 0)

profile (2.29) are shown in Fig. 3. Curves are drawn for different  values of

cx with T once again fixed at 0.2, and the results are qualitatively similar

to those for a uniform flow. The local structure near the intersection point

of flame and wall is now described (when ‘P
~ 

= 0) by
f

h C(x 0— x ) ’~
”3 (2.31a )

T
0 

1 + T + (x 0—x )
1”3F (C) (2.3lb)

where

F” - CF’ + F = 0, 
~ 

= 
1/3(x 0— x )

F ’ ( O ) — O , F ’ ( C ) — l .

The general solution for P is

1 2
C

F — A c J d~~ e 
2

C
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and B must be chosen so tha t

I
= f d~ 

(e 
2

_ I ) 
,

B 0

Concluding Remarks. The analysis of this section is founded on the assumption

that the gas speed is much greater tha n the f lame speed so tha t y derivatives are

much larger than x derivatives. Clearly this condition is violated in the

vicinity of the intersection of wall and flame, so tha t it is not clear how

the nonquenched solutions should be interpreted . Certainly for the shear flow

one ~~u1d expect flashback to occur if the heat losses are insufficient to

cause quenching , and then there can be no steady solutior.. These considerations

do not cast any doubt on the prediction of quenching of course, since the

• quenched solutions have bounded flame slopes and the slow flame approximation

is uniformly valid al l  the way to the quenching p oi n t .

Finally, it can be immediately recognized that for unquenched flames in a

uniform flow the flame speed increases as the wall is approached despite the

fact that the perturbation flame temperature ‘Pi 
is negative. This provides

f
a counterexampie to any speculation that even for two-dimensional flames a

decrease (increase) in flame temperature can always be associated with a

decrease ( increase) in flame speed .

-19- 
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L ~om~ I-~, marks on Flame_Stretch

In §2 it is shown tha t if a flame comes close to a surface through which

i~~~ large enough ) i ’ a t  losses , it will be quenched . The fact that th~

~;urfa~-e ,s ~ ~hase t~~ u n d i r y  ~ 1ays no role and it may be con jec tu red  tha t  under

some c ii -umstances th~ heat transfor from one part of the combustion fiold

to ~ii~~ther can -~ w quenching even in the absence of external heat sinks .

Indeed i t  has b~~ n argued that an appropriate measure of this heat flux is

the local flame ~ t r c t }i , and that if this is greater than some uri t iLal value

quenching  w i l l  occur .

Before going any further it is appropriate to define what is meant by

flame stretch and to do this in an unambiguous fashion it is necessary to

define the concept of a flame surface . This is simply a sheet that characterizes

the location of the flame . Thus for the problem of §2 the reaction flame

sheet is a flame surface when looked at on a scale that is large compared to

the preheat zone thickness divided by e. For similar problems Lewis and

von Elbe uonsider the flame surface defined by the locus of inflection points

of the temperature distribution in the preheat zone . For problems of the type

characterized by (1.5) which this author has called ‘slowly varying flames ’

(Buckinaster , 1977), hydrodynamic disturbances are described on a scale that

is OCR ) times the preheat zone thickness, and on this scale the f lame is

simply •~ hydrodyri amic d i scon t inu i ty  of the kind discussed by Markstein (1964).

This discontinuity is a flame surface. Now consider a point moving in a flame

surfa~ e with a tangential velocity equal to the tangential component of the

gas velocity immediately ahead of the surface . A small area ti comprised

of such points wi l l in general be deformed as it moves over the surface,  its

magni tude will change and the flame will be stretched . A precise measure of

this stretch is (Williams , 1975).

-20-
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Karlovitz et al. (1953) were the first to suggest that this stretching can,

if l a rqe  enough , lead to ex tinc tion of the f lame , and the idea was subsequently

*
pursued with great enthusiasm by Lewis and von Elbe (1961) . They argue, for

example , that this is the cause of blowoff of a flame stabilized beh ind a

straight wire (Fig. 4). Such a flame experiences strong shearing from the

boundary layer generated by the wire, and associated with this sh€aring is a

positive degree of stretch . The greater the speed of the gas past the wire the

greater the shear and therefore the stretch, and the claim is made that through

th is mechanism there is a max imum gas speed beyond which the flame will not stay

attached .

Now there are several a priori objections that may be raised to the

various claims that have been made for stretch , no less important because they

are clearer a posteriori. The English language is an imprecise tool so that

the manner in which stretch achieves what is claimed for it is not too clear ly

described . It will suffice to say that the basic idea expressed on p. 227 of

Lewis and von Elbe is that stretch changes the rate at which heat is transferred

from the reaction zone to the unburned gas , and this effects the flame speed .

This can not be a local phenomenon in general, since the thermal history of

fluid that travels from far upstream to the flame sheet must depend on the

stretch exper ienced by a f inite portion of the flame , if it depends upon the

stretch at all. Thus a quenching criterion expressed in terms of a local

stretch factor can only be meaningful if the local stretch is repre-

• sentative of the stretch experienced by the flame globally . But there is no

*
That they attach great significance to the concept is suggested by the fact
that it is mentioned in the Preface to the Second Edition of their book.

—21—
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way of relating the global stretch experienced by the flame of Fig . 4 at one

value of the gas speed and wire diameter to that experienced under different

• circumstances since the flows will not be similar in qeneral. Thus if it was

true that blowoff occurs once the g~~e~d~ stretch experienced by the flame

exceeds some critical va lue , then a series of experiments on wires of different

diameters with the gas composition fixed would inevitably yield different

values of some locally defined Karlovitz Number . Only if the preheat  zone

thickness is much smaller than the radius of curvature of the flame will the

effect be purely local.

Unfortunately there is little reason to believe that th heat transference

rate is only associated with the stretch, even in some global fashion.

Variations in the preheat zone thickness will also play a role and these are,

in some sense, independent of stretch . One only has to think of a one-

dimensional unsteady flame for which the stretch is identically zero and yet

variations in thickness can occur affecting the heat flux .

Also the argument on p. 227 of Lewis and von Elbe  that positive stretch

must reduce the flame speed is based only on cons idera t ions  of t r ans fe r  of heat

and active species and fails to account for the fact that the diffusion of

fresh mixture is also affected by stretch but that this flux is in the opposite

direction to the heat flux. The influence of positive stretch through this

mechanism is apparently such as to increase the flame speed so that the overall

effect is Lewis Number dependent. At a closed axisymnietric flame tip the

• stretch is negative and the flame speed enhanced over the adiabatic value .

But at an open axisyimnetric tip the stretch is still negative but here the

flame speed is below the adiabatic value , something not admitted by the claim

on p. 227. Curiously enough on p. 218 Lewis and von Elbe admit the role of

hi



reactant  C i f f u s i o n  effr~ ts in expla in ing  open tip flames , but mention it

nowhere else in their extensive discussion of stretch . Thus on p. 242 where

they or isider  b low—off  f rom a wi re  they argue that  the s tretch is positive,

the f l a m e  speed reduced as a eonsequence , and for large enough s tretch the

flame will be quenched . To be consistent with their discussion on p. 218 they

would surely have to admit that for some mixture compositions blow-off is

impossible , but this important test of the validity of the blow—off arquxnent is

nowhere discussed . Moreover , )n p. 337 where ignition by a point source is

discu.~ced, the admission that for some mixtures stretch causes an increase in

the fIanc e speed would lead to the curious conclusion that for such mixtures an

art itrarily small ignition source will always lead to ignition.

These remarks are illuminated by a general equation governing slowly vary-

ing flames that is derived in the Appendix. This equation ((A.19) with t

replaced by t’) is

2 2 1 dv 11 dA 1 dli iH Zn (H ) = 
~~ 

= —;_ — — (3.1)

where H is the flame speed divided by the adiabatic flame speed , ~ is a

Lewis Number dependent constant defined by (A.3b) , t’ is physical time , and

V is the volume of a flame element defined as the product of A and an

appropriate flame thickness ~ which emerges in a natural  way from the large

activation energy analysis. This relation is a local one simply because an

essential feature of slowly varying flames is that the thickness of the pr ehea t

zone is much smaller than its radii s of curvature.

Equation (3.1) reveals both the thickness and Lewis Number effects

discussed above . Thus i t  is not possible to say, without qua l i f i ca t ion, that

positive stretch will always slow the flame . Nor can it be argued that  when

.1 
- 

__
~~~~

_ 
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is negative (L>l) positive stretch necessarily slows the flam e, al though

that is certainly true when the dilatation is positive . Thus physical arguments

based on stretch alone omit an essential part of the physics and so are

unacceptable.

It is worth noting in passing that equation (3.1) suggests the possibility

of a quenching mechanism qu ite d i f fe ren t  from that described in §2.  Figure 5

shows how H2 changes with B ~ and it is apparent that the latter has a

minimum value of (-e ) when H = e . Thus no flame can exist for a

dilatation that satisfies the inequality

—B ~ > I , ( 3 . 2 )

and at the critical value, when the flame is just quenched , the flame speed is

• not zero. Such a quenching mechanism , assuming it exists, is analogous to

quenching by volumetric heat losses (Buckmaster , 1976) and not the quenching

mechanism of §2. The qualification is necessary in view of the fact that the

dilatation is not something that can be directly controlled but is determined

in part  by the instantaneous flame configuration . Thus it is conceivable that

no matter what shear flows or other disturbances are applied the flame always

adjusts so that the dilatation is smaller than the critical value. No flame

solutions have yet been obtained that exhibit quenching of this type, and the

question is presently an open one. True, Sivashinsky (1976) has proposed tha t

a slowly varying flame located in a stagnation point flow will not exist under

some circumstances, and there are obvious similarities between his analysis and

the quenching mechanism proposed here, but his discussion is flawed by unresolved

noriuniqueness.

So far our discussion of stretch has been restricted to broad qualitative

considerations. The quantitative manner in which stretch has been used to

correlate blowoff data exposes another flaw . In blowoff situations , stretch

______________ - 
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l~~~ .
occurs because of shear and it is ar ~ued ti lt  t h ~- str~ t t i  fac tor ;

(which is difficult to determine experimentally) can be irci c~~ riz’ 1 ky I L

*
Karlovitz Number

— 6 dU
K — - —- (3.3)
a U dy

where 6’ is the thickness of the preheat zone for the one-dim s r s i o n a l

adiaba tic f l ame, U is a characteristic velocity and is a char i terzst~

shear . It is then argued (see Reed 1967 for example) that for identi~ al turner

configurations blowoff of different mixtures will occur at the same value of

K .  Wha t is curious about this claim is that the only role the Lewis Nurri~ r

plays is an indirect one through its effect  on the adiabatic flims speed and

therefore 6 , and yet one would surely expect the solutions of  equations suc

as those discussed in §2 to depend directly on the Lewis Number through their

dependence on A . This expectation will be verified in §4 where it is shown

that the response of a flame to a shear flow can depend critically on the

value of A .

In view of the preceding discussion it is this author ’s firm opinion that

use of a local stretch criterion to explain or correlate quenching ic at best

misleading , and at worst simply wrong. We note that Melvin and Moss (1973),

on the basis of a careful examination of experimental data , have also questioned

the concept as applied to the understanding of blow-off from burner ports.

These objections leave unanswered the interesting question of whether or

not a shear flow such as that of Fig. 4 can quench a flame, and this is the

subject of §4.

*However , the differences between K and the stretch factor are revealed in
the Appendix.

I
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4. yuenching by a ~;h tr Flow

In this ~so- tion we return to the question raised at the beginning of §3,

namely whe s ii .- r r ri t hstort~on of a flame can generate sufficient heat

transfer from one k a r l  of t h e  combustion field to another to cause quenching .

The c~ ecifjc problem to be examined is partly motivated by the physical situation

.k.~t hed in Fig. 4but it must be emphasized that the results of this section,

despite their undoubted physical interest, probably have no relevance to the

question of blowoff from a wire. Undoubtedly this is better understood in

terms of the destabilizing influence of the velocity gradients behind the wire ,

and the stabilizing influence of heat transfer from the flame to the wire .

The model problem is shown in Fig . 6. A combustible mixture flows from

left to right with a uniform velocity in the region y > 0 and a l inear  shear

in the region y < 0. Far upstream the shear does not influence the flame

which is then one-dimensional and inclined to the horizontal at an angle defined

by the gas speed and the adiabatic flame speed . As x increases the flame

approaches the shear region, becomes curved, and the combustion field is two-

dimensional. The fundamental concern is whether or not there are values of

shear and Lewis Number for which the f lam e will reverse and move away from the

x axis  with increasing x , a phenomenon that we ident ify with quenching .

The basic equations are identical to those of §2 after the large activation

energy, slow flame approx imations are adopted , wi th the func tion f (y) wh ich

defines the variations in gas speed chosen as follows ,

f~~~ l , y > O  (4.la)

f~~~ l — K y , y < 0 . (4.lb)

Numerical Integration. The numerical probl~~n is slightly more complicated than

that of ~2 since the analys is is not restricted to A — 0. The variable y is

—28—
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replaced by z y - h(x) in order to fix the flame sheet at z = 0, and the

difference equations are solved using a double iterative scheme . In this

scheme is quessed and the problem for T
0 

defined by (2.lla), (2.25b)
f

solved , iterating on h until (2.12) is satisfied . Then solving for

everywhere ((2.llb) , = 

~ l 
at the flame sheet) the condition (2.13) is

f
checked and if not satisfied to the required accuracy a new guess for is

f
adopted and the entire procedure repeated . This works well enough for moderate

values of A. The initia l profile with which the calculations are started at

x = 0 is

z < 0 T = T  + e
Z (4.2a)

0

= _ A z e Z (4 . 2b)

z > 0  T = l + T  (4.2c)o
= 0 . (4.2d )

Some results of such calculations are shown in Fig. 7 for different values

of A with K fixed at the value 5. It is apparent that both quenched and

unquenched pro fi les are possible, depending on the Lewis Number . Thus A 10

gives rise to quenching , but A 0,5 apparently does not. For some values of K

quenching can also occu r for nega tive values of A , as we shall see , bu t no

computer solutions have been obtained for such cases . These solutions are

characterized by large values of K and (-A), with quenching occurring at large

val ues of x~ and convergence d i f f i c u l t i e s  experienced in an attempt to find

such solutions were so serious that the attempt was abandoned.

No attempt has been made to map quenching boundaries in the A - K para—

meter plane , an expensive procedure not of obvious value . Ins tead , the asymptotic

limit K 4 has been explored to lay bare some of the complexities of the response .

~~y~pptotic Analysis in the Limit K .~~~~ Limit equations valid as K ~~ in j
y~~~ O are

— 

~~~~~~~~~~

--— 
_ _._

~~

_ _ _ _ _ __

~~~~~-30-

_ —- -- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- _ _ _ _ _ _ _ _ _



I
-

~ III
ID I

0

I. •‘ I
-S

I I -~

I I I 
_________________

(•4 — ,-) —4 (I
I S

C- —31—
_______-- -- - - - ~~~~~~~~~~ .-



= 0 = -c--i . (4.3)

Thus provided the flame remains in the region y > 0 (i.e. h > 0) it is

appropriate to solve the equations in the region y > 0 (where f 1)

subject to boundary conditions

T
0 

= T , 
~l 

= 0 at y = 0 . (4.4)

This system has a simple k-independent solution that can be expected to be

appropr ia te as ~ 
- . , namely

* r A 1
h = h = expl 

2 I ‘ 
= —A (4 .5a , b)

L2 (l+T ) J f

y < h = —A exp[—~~ 21y 
(4.5c)

1 L2 (l+T ) J

= T + exp[ ~ 21 y (4.5d)
L2 (l+ T~~

) J

y > h p
1 

= —A , T
0 

= 1 + T5,, . (4.Se, f)

Now the flame is first affected by the shear flow when the fringe of the preheat

zone defined by (4.2) first intersects the x axis. That is why in Fig. 7 h is

less than 2 before significant curvature is apparent. On the other hand quite

*
moderate values of positive A can yield large values of h , for exampl e

A = 6, T = 0.2 gives h ~ 8. Thus if A is large enough it can be expected

that the limiting solution valid as K -‘- will display quenching . Indeed

numerica l results show that quenching does occur if A > 0, but not if A < 0

(Fig. 8).

The limiting solution characterized by (4.4) is only valid when \ 0(1),

for when x — 0(K) there is significant diffusion in the region y < 0.

Limit equations valid in this region are obtained by first writing

-32- __H
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A = OK (4.6)

so that in t~~ i . limit , assuming h is positive which is ce r t a in ly  true in the

neighborhood of i = 0, we have:

2 - 2 2a T
0 ~~l 

a ~ a T
0

y < 0 -y -c- = —i-- , -y -
~~

---— = —i-- + A —i-- (4.7a ,b)
ay sy

2 2
a T

O < y ~ h —j-- = 0, —i- = 0 , (4 .7c ,d)

2

h < y T
0 

= 1 + T , —i = 0 . (4.7e ,f)

In the reg ion y -‘ 0, both p
1 

and T
0 

are linear functions of y characterized

by h and sp
f

h < y  
~ 

=
~~~~~~ 

, (4.8a)
1 0

r ~ l 1
0 < y < h  T = expl ~~2 I ( y — h ) + l + T , , (4 .Sb)

0 
L2 1.

~-T_ ) J=

r 
~l 

1

p = —A exp1 ~ I (y—h) + 
~ l 

(4.8c)
1 L2 1+T€=

2
J f

On the other hand , in y < 0 equations (4.7a ,b) have similari ty solutions

which satisfy the conditions T
0 

-. T , ÷ 0 as y 4 — , namely
1

P = T + cr 3f(n) , (4.9a)
0

= 
~~~~~~~~~~~~ 

f = f(0)[l ~ n ~~ (l- e
9 fl

3

)] , (4.9b ,c)

I
= o3g(n) , (4.9d)

g — A dfl ~e
9 

+ ~ (0)[l + n f ~ ( l— e9 )] . (4 .9e)
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p
It follows tha t

1
f’(O) 3 12
f ( 0 ) = ~ , (4.l0a)

= —A 9 6 r ( .~.) + 

~~ 
9~~~r(~.) . (4.lOh)

The solutions obtained in the two regions must match in the sense that P
1
, T

0

and their first derivatives with respect to y are all continuous at y = 0.

Thus (4.8) defines f, g and their first derivatives at n = 0 in terms of h

and ‘P1 
whence (4.10) may be rewritten in the form

f

Ac 3 
= (1-hA) (4.lla)

-AAa 3 = _x9 6 r(~~) (1-hA) + ~~
3 r(~-~ (‘P1 +hAA ) , (4.llb)

exp 2 (4.llc)
12 (l+T
I... ~~

These equations determine how both h and ‘P 1 
vary with a and it is easily

f
verified that matching with (4.5) is achieved as a -‘ 0.

Since it has already been concluded that when A is positive quenching

occurs on the x = 0(1) scale , we shall only discuss the solution of these

equations for negative values of A .  By eliminating h a single equation for

‘P may be written down
l~

r .~~~L r (‘Pi+A ) l

~ 
expi— A 

2 
0 = (‘P i 

+A ) expi— ~ 
2 I (4.12 )

612 1 L 2 ( l+T,) ~ L 2 ( l +T,,,,) J
~ ~3I

whence it follows that decreases monotonically from its value (-A) at
f

a — 0, approaching (- ‘) as a ~~ ( although it must be remembered that the

analysis is only valid for the interval in which h is positive) . Turning to h ,

—35—
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(4.11) yields

- Ah’ = 2 
[2(l÷T )

2 
- + 

~l j  (4.13)
2(1+T ) L

from which it may be concluded that if A satisfies the inequality

A < —6(1-fT )2 (4.14)

h is an increasing function in the neighborhood of c = 0  so that quenching

*
occurs with a dead space equal to h

When A lies in the interval [—6(1-4-T )
2
,0] h decreases from its value

*
h at a = 0 and vanishes when a = a . where

1

0 . = ~~[r(.~.)]
3

ex~
[ 2] 

(4.15)

a result that can be checked numerically . Thus in Fig . 9 values of X (h=0)

for different values of K are shown for A = 0, -1 and through these points

are drawn straight lines of slope equal to For values of a greater than

a
1 

the flame sheet lies in the region y < 0 and its progress must be followed

numerically since the simple similarity solutions (4.9) are no longer appropriate .

Typical results are shown in Fig . 10 and show no evidence of quenching .

Concluding Remarks. The results of numerical calculations such as those shown

in Fig . 7, and the asymptotic analysis when K -~ = suggest that for some range

of values of K there is a band of Lewis Numbers for which quenching does

not occur, but outside this band the flame is quenched by the 3hear flow. The

evidence suggests that the band always contains the value A = 0. This appears

to be the first sound theoretical evidence that a shear flow can quench a flame .

Quenching when A is positive is characterized by a monotonic decrease in

the flame temperature between ~ = 0 and the quenching point. However , if

_____ Ti_ __  - _ _
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quenching occurs when A is negative first increases , reaching some

positive maximum value , and then decreases becoming negative before the

A quenching point is reached . There appears to be little doubt that negative

values of ‘P i 
are necessary for quenching to occur .

t ~
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5 . Summary

In this paper the explicit analysis of two problems and the reinterpreta-

tion of 2crtain results for slowly varying flames has established several

facts of basic interest in the theoretical study of premixed flames . Some of

these have been anticipated before but the present analysis appears to provide

the first reasonably sound mathematical evidence. These results are now

summarized .

When the Lewis Number is equal to one, a flame that comes close to a surfa~-e

through which there are heat losses behaves in one of two ways . If the heat

losses are small the dominant effect is a geometrical one which causes the

flame speed to increase . No change of flame temperature is associated with this

change of flame speed in the sense that when the heat losses are zero the flame

temperature is everywhere equal to the adiabatic flame temperature. On the

other hand if the heat losses are sufficiently large the flame speed decreases

as the wall  is approached , attaining the value zero at some f in i t e  distance

f rom the wall , and this is identified with quenching . This decrease in flame

speed is associated with a decrease in flame temperature below the adiabatic

val ue.

A flame of arbitrary Lewis Number (provided I L  - 11 = O(~-)) that

approaches a shear flow can also be quenched , and whether this occurs or not

depends on the parameter values. For very large shear gradients quenching does

not occur for a finite band of non—positive Lewis Numbers, but outside of this

band quenching does occur . In a neighborhood of the quenching point the flame

temperature is below the adiabatic value .

Although all of these results are valid only for Lewis Numbers within O (~-)

of 1, it can not necessarily be argued that this restriction inevitably



ex cludes large numbers of combustible mixtures . In practice activation energies

are only moderately large, with values of e between 10 and 20 being fairly

• typical, and for such modest numbers 0(1) values of A cover the whole

range of Lewis Numbers possible for a gas mixture . Thus it is conceivable that

to r steady premixed laminar flames the only results of activation energy

-i symptotics that are of practical interest are those for which IL - l~ is

0(1) . The stability results of Buckmaster (1977) and Sivashinsky (1977)

support such a view.

In spite of these remarks it would be premature at this stage to discard

theoretical results such as those for slowly varying flames valid when Ii - LI

is 0(1), and one of the results of the present paper is a remarkably simple

physical interpretation of the general equation governing such flames. Thus

it is shown that a simple function of the flame speed is proportional to the

logarithmic time derivative of a volume element of the flame, where the sign of

the proportionality constant depends on the sign of (L-l). The role played

by changes in the f l ame thickness as well as the flame stretch destroys the

notion that useful insight into the quenching of flames can be obtained by

considera tions of stretch alone ; and this objection, deriv ing as it does from

a rational analysis of the combustion equations, is quite independent of any

future conclusions that may be reached about the practical utility of slowly

vary ing flame results.

There is an important lesson to be learnt from the history of flame stretch

of which the present discussion forms part. Mathematical studies are often

criticized for lacking physical content, and despite the remark made in the
- 

Introduction that equations such as (1.1) have a scientific life of their own

independent of known physical facts, certainly it is wise to bear in mind their

—41-
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ph ysi-~i1 origin. But while adm itting that mathematics without physi-:s can be

st er i l c , i t  also should be noted that physics withou t mathematics can simply

be wrong . The complexities of problems such as those examined here are too

great to be unravelled by intuitive reasoning alone , so that valuable though

the latter may be (the search for equation (A.19) was motivated by claims for

the significance of stretch), without very strong experimental evidence or

mathematical evidence the conclusions of such reasoning should not be taken

too seriously.

We conclude with some observations on possible extensions of this work.

The solution obtained in §2 when c~ is zero and there are no heat losses

through the wall corresponds to a two—d imensional burner tip since the wall

condition is then simply one of symmetry . It would be of great interest to

study such burner tips (and their axisymmetric equ ivalents) for d if f e r e nt

values of A to see whether or not open tips can be obtained under the

appropriate cir cumstances , and such a study is currently underway . Also , as

noted in the Introduction , the present techniques can be applied even when the

fluid mechanics is incorporated in the proper fashion, and this facet will be

explored in the future.
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A - ~~ihx . T h - F u n d~ m~ nta~~~ j~ation Governing Slow1y Varying Flames.

In r’~~~r~tly published work by th . present author (Buckznaster 1977) an

•~~uat ion is dedu~~ d that governs the general motion of a slowly varying flame.

The equations that form the basis of this investigation are similar to those

of the present paper but are more general in that the fluid mechanics is

r - ; . rly In - - orI (rated m r—i the mathematical model. In discussing this work we

shall retain the notation of the orig ina l paper rather than tha t of the present

~~rk in order t o  minimize the chances of confusion. The chief differences are

that x , y, z and t are dimensional quantities , ~P replaces T as the

nondim ’-risional temperature , and the flame is propagating from left to right.

A slowly v~ rying flame is characterized by the fact that its deformation

is described on the length scale and the changes in this deformation on
Op -A p

the ti me scale —y—— . Since the analysis encompasses large deformations, with
m C

the location of the~f1ame sheet defined by

x x f (Y~ z~ t) (A.1)

the variable x has magnitudef t mC
p

The asymptotic analysis must be carried out in three regions : the preheat

zone of thickness 0 — ; the flame sheet of thickness Oi-~-- 
— ; and

mc ~8mC

the hydrodynamic regime where Ix - X
f I is o(~~ —J . On the hydrod ynamic

scale the flame is a discontinuity of the kind described by Markstein (1964)

across which the temperature jumps from to (l4~,,). The solution

on this scale is obtained in principle by solving Eulers equations

of hydrodynamics on each side of the flame sub j ect to the requirement that the

mass and momentum fluxes are conserved through the discontinuity . This

analysis cannot be uncoupled from that of the other regions and may be thought

• - - 
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of as specifying the gas velocity immediately ahead of the flame (at

X
f 

+ 0) as a functional of x
f
. This velocity is

-~~

v (y , z ,t) (v
1
,v
2
,v
3
) . (A.2)

Analysis of the combustion zone then establishes that changes in x
f 

are

governed by the system

H
2irI(H

2
) -1—~ij- 

~~ + v
2 

+ v
3 

+ ~~~ + — (
~~

-
~

- + 

~
-
~
-)] (A.3a)

1
O p A  ~~~ r L-l ~~ ~

L-l 
1

2 I~~oo $ dx l 
_
in (1+ T-;) , (A.3b)

m C  (l-i~~~) L 0
p

aX
f 

aX
f 

3X
f

a t l 2 a 3 a  
, (A .3c)

• 

~~~~~~~~~~~~ 

: 

(
3x )

2

(
3 x )2j

1. 
= 

at 1 2 3y 3 aZ (A.3d)

I 
2 2

1 1 +  —~ +
L ay

The variable 6
1

(y , z,t) is a measure of the flame thickness viewed in a direc-

tion parallel to the x-axis in the sense that in the preheat zone the temperature

has the form

2

~ + exp[_ ~- 2 (x_x
f)] 

. (A.4)

Our discussion is concerned with che physical interpretation of these equations,

• and their relation to flame stretch and other kinematic concepts.

— -_~~~~~~~
.-• -

~~~ — —  :
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The Kinemati cs of a Flame Sheet. We now examine the flame on the hydrodynamic

scale and (-alculate the nondimensional stretch factor

Ap
s 

~~~~~ 
~ (A.5)

in terms of the arbitrary functions xf~ v. The ultimate goal is to interpret

the system (A.3) in terms of kinematic variables such as S, so that the

discussion is carried out in a Cartesian frame.

The most transparent way to calculate S, though cer tainly not the most

elegant , is to cons ider the deformation of an infinitesima l parallelogram as

it moves over the flame surface. To this end , consider a point A attached

to the surface with coordinates (x,y,z) at time t so that

X = X~~(y , Z,t)

3X
f

Consider also a nearby point B with coordinates (X
f 
+ ~ 7~

, y + E,Z) and
ax

a point C with coordinates (X
f 

+ c ~~~~~~~~~~ y,z + €). These three points

define an infinitesimal parallelogram in the flame sheet of area A where

1
2

2 2ax
fA = € Ii + — + — . (A.6)

L ay

The veloci ty of A is labelled ~~(y,z,t) (q
1

,g
2

,q
3
) and the velocities of

B and C are respectively q + E and q + E ~~~~~~~. Thus after a time 5t

the coordinates of A are (xf + q
1
tSt, y + q

2
6t , z + q

3
6t) and this only

remains in the flame surface, as required , if

ax ax ax
(A.7)

ax
f 

ag
1The new coordinates of B are (x + E — + q ~t + € — dt ,f ay 1 ay

aq ~q3y +  + q 2 tSt + c - ~--~~6t , z + q 36 t + ~~~~~~~~ t) with a similar result for C
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and in this way th e new area of the parall elogram can be calcula ted , and af ter

equating to A + 6t yields the result

~~ a~, az ay az ay ay az az ay az az 3~ ~y ay az az
A d t  r 2 2

aX
f 

ax
1 1+  — + —
L ay az

or , eliminating q
1 

using (A.7)

~ ~~~~ 
+~~~~~~ tn[i. + (

~~~1~
)

2 

+ ( a )
2
J , (A.8)

The velocity of the point A tangential to the sheet is equal to the

tangential component of the gas velocity v so that

-~~ -~~ -~ -~~ -~~ -~~ — -~
q - (q.n)n = v - (v-n)n (A.9)

where

( aX
f 

ax
f)

= 

~~~ 
~~~~~~~~~~~ (

~~~~~

)
2]2 

(A. lO)

is the unit normal to the flame surface. Noting that

axfat
(q.n) 1 • (A.ll)

[1 + 
(

~~~~

)

2 

+ ( a )

2

)

2

equation (A.9 ) can be used to express q in terms of v. Thus

1 dta aV
2 

av3 ~ ~ 
aX

f a 1 
ax
f

• ~~~~~~~~~~~~~ 
~~~~~~~~~~~~ ~ r-~

-
~
- ~~

f ax 2 ax 21
+ ~~~ Ln[l + _5~i + ~1 j  

(A.12)

- -_~• -  -~~~~ 
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where the operator can now be written in the form

D 3 3 3 1 3X
f 3 1 

3X
f 3

(A.l3)

Note that if v
2 

and v
3 

both vanish identically and v
1
, X

f 
depend only

on y ,  the s t re tch factor  may be written as

~~ = ____! . + 
i f  

(A 14)A dt dy 
~ + (x ’)

2 
(1+ (xi) 

2
)
2

which differs significantly from the Karlovitz Number (equation 3.3).

Consider now the variations in the thickness 6(y,z,t) of the element of

the flame as it moves over the surface . In view of (A.lO) ,

‘S
‘S = 

1 
1 

(A.l5)

r 2 2~ 23x
1 1+  —f- + ~~~L 3Y 3z J

and moreover

(A . l 6 )
dt Dt

The VOL me V of the flame element , defined by

V iSA

changes according to

l d V _ l d A ~~~~l dt5 
-

V d t Acl t i S d t

so th~t from (A.12) and (A.l0) it follows that

2 2
1 dV ~ 

36
1 

36
1 

3v
2 

3v
3 1 

3 X
f 

3 x
f— - —~ -— + v 2 —s—-- + v3 —s--- + + —s—— - i— —i- + —i-- . (A. 17)

Finally we note that the flame speed is defined as the normal component of the
I

flame element velocity relative to the gas, i.e.

_ _ _  
_ _ _

~~

T

~~~~~~~~~~

~_



3x f
-~~~~~~ ~~~~~~ ~~~~~~~~

V
l

+ V
2 T

+ V
3

Flame Speed = (q.n) - (v.n) 
1 

(A.l8)

+ 
(3x

)

2 

+

and the thickness 6 is inversely proportional to this quantity.

interpretat ion of the Activation Energy Results. Comparison of the asymptotic

results (A.3) and the kinematic expression (A.l7) shows that the fundamental

equation governing the propagation of a slowly varying flame can be written in

the form

H
2in ( H 2

) - = 0 (A.l9)

where H may be identified with the nondimensional flame speed . Note that the

effect of a change in volume depends on the value of the Lewis Number L.

I f L > 1 then ~ is negative so tha t dilatation > o) slows the flame

below the adiabatic value (H2 < 1) whereas compression < o) speeds

it up (H > 1). If the Lewis Number is less than one this effect is reversed .

Since iSH = p / r n, (A.l9) can be written in the form —

H
2in (H2) + ~~~

- 
~ , (A.20)

thus establishing a functional relationship between H and S.
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